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1 Big Data

Every day humans generate several petabytes of data [ZEdT11] from a variety of
sources such as orbital weather satellites, ground-based sensor networks, mobile
computing devices, digital cameras, and retail point-of-sale registers. Companies,
governments, and individuals store this data in a wide variety of structured,
semistructured, and unstructured formats. However, most of this data either
languishes in underutilized storage repositories or is never stored in the first
place. Ironically, in an era of unprecedented access to a veritable gold mine of
information, it is increasingly difficult to unlock the value stored within our data.
The essential problem of “Big Data” is that we are accumulating data faster than
we can process it, and this trend is accelerating.
The so-called “four V’s” characterize Big Data:

— Volume: applications sometimes exceeding petabytes®

— Variety: widely varying heterogeneous information sources and hugely di-
verse application needs

— Velocity: phenomenal rate of data acquisition, real-time streaming data, and
variable time-value of data

— Veracity: trustworthiness and uncertainty, beyond the limits of humans to
check

We should expect conceptual modeling to provide some answers since its
historical perspective has always been about structuring information—making
its volume searchable, harnessing its variety uniformly, mitigating its velocity
with automation, and checking its veracity with application constraints. We
do not envision any silver bullets that will slay the “werewolf” of Big Data,
but conceptual modeling can help, as we illustrate with an example from our
project that seeks to superimpose a web of knowledge over a rapidly growing
heterogeneous collection of historical documents whose storage requirements are
likely to eventually exceed many exabytes.

4

3 Having successfully communicated the terms “mega-,” “giga-,” and “tera-byte,” in the
Big Data era we now need to teach users about “peta-,” “exa-,” “zetta-,” and even
“yotta-bytes.” The NSA data center being built in Utah within 35km of our univer-
sity purportedly is designed to store at least zettabytes (1021 bytes) and perhaps
yottabytes (10%* bytes) of data.
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2 Conceptual Modeling to the Rescue

Can conceptual modeling “come to the rescue” in some sense and help address
some of the challenges of Big Data? We believe that the answer is affirmative. We
do not expect conceptual modeling to address such issues as how we physically
store and process bits of data, but “Moore’s Law”’* gives us confidence that
future hardware technology will also help address these challenges. The mapping
of conceptual models to efficient storage structures, a traditional application of
conceptual modeling, is likely to be vastly different for Big Data and may be of
some interest. But logical-to-physical design is not where we see the impact of
conceptual modeling on Big Data. We expect that conceptual modeling can help
by conceptual-model-based extraction for handling volume and velocity with
automation, by inter-conceptual-model transformations for mitigating variety,
and by conceptualized constraint checking for increasing veracity.

Consider the application of family-history information as captured in histor-
ical books. We have access to a collection of 85,000 such books that describe
family genealogy, biographies, family stories, photos, and related information.
These documents contain a variety of pages as Figures 1 and 2 illustrate. Doc-
uments such as these are information-dense, containing many assertions both
directly stated and implied. For example, from the page in Figure 1 we read
that Mary Ely was born to Abigail Huntington Lathrop in 1838—the author
stated this assertion directly. However we also can infer that Mary was a daugh-
ter of her mother Abigail because “Mary” and “Abigail” are generally accepted
as a female names. This type of information—including both stated and inferred
assertions—is useful to someone who is searching for information about members
of this family.

Assume that each book has approximately 500 pages, that there are 100
stated and 100 inferred assertions per page, and that each assertion requires
500 bytes of storage. Further assume that each page needs to be stored both
as a high-resolution image and as a processed textual representation, taking
another 10,000 and 1,000 bytes respectively.” We conservatively estimate that
we could store a fact base extracted from these 85,000 documents in 85,000 x
500 x ((100 4+ 100) x 500 + 10,000 + 1,000) = 4,717,500, 000, 000 bytes. The 4.7
terabytes constitutes a modestly large data store, though fairly manageable, and
we guess that compression techniques could reduce the storage requirement into
the sub-terabyte range.

However, this collection is only the beginning within the family-history ap-
plication domain. There are many such collections of historical family-history
books, and a variety of other related information sources of interest, both static

4 Moore’s Law is not strictly speaking a law, but rather Gordon Moore’s observation
that the number of transistors on an integrated circuit doubles approximately every
two years. The observation has generally held true since 1965, though some observers
believe the rate of growth will soon decrease. See http://en.wikipedia.org/wiki/
Moore’s_law.

5 These assumptions are based on approximate averages we have observed in our actual
work on historical documents.
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SEVENTH GENERATION.

241213. Mary Eliza Warner, b. 1826, dau. of Samuel Selden Warner
and Azubah Tully; m. 1850, Joel M. Gloyd (who was connected with
Chief Justice Waite’s family).

243311. Abigail Huntington Lathrop (widow), Boonton, N. J., b.
1810, dau. of Mary Ely and Gerard Lathrop; m. 1835, Donald McKen-
zie, West Indies, who was b. 1812, d. 1839.

(The widow is unable to give the names of her husband’s parents.)

Their children: fases=

1. Mary Ely, b. 1836, d. 1859.
2, Gerard Lathrop, b. 1838.

243312. William Gerard Lathrop, Boonton, N. J., b. 1812, d. 1882,
son of Mary Ely and Gerard Lathrop; m. 1837, Charlotte Brackett
Jennings, New York City, who was b. 1818, dau. of Nathan Tilestone
Jennings and Maria Miller. Their children:

Maria Jennings, b. 1838, d. 1840.
‘William Gerard, b. 1840.

3. Donald McKenzie, b. 1840, d. 1843.
4. Anna Margaretta, b. 1843.

5. Anna Catherine, b. 1845.

g

} Twins.

243314. Charles Christopher Lathrop, N. Y. City, b. 1817, d. 1863,
son of Mary Ely and Gerard Lathrop; m. 1856, Mary Augusta Andruss,
99z Broad St.,, Newark, N. J., who was b. 1825, dau. of Judge Caleb

The Ashman house on the hill where Dale-was born, fall of 1910.

Halstead Andruss and Emma Sutherland Goble. Mrs. Lathrop died Grandma had hoped Dale would be  girl. After he was born, her
3 m husband accused her of making a girl out of this golden, curly haired boy.
at her home, g92 Broad St., Newark, N. J., Friday morning, Nov. 4, She loved fixing his hair in long ringlets but when he was four he'd had
1898. The funeral services were held at her residence on Monday, Nov. e iy caala e i el o o s e
7 [898, at half-past two o'clock P, M. Their children: fearful. Grandfather Ashman could never stand to see one of his children
cry 50 he took Dale across the street and bought him a small box of fairy
1. Charles Halstead, b. 1857, d. 1861, stick candy.
2. William Gerard, b. 1858, d. 1861. Next they went to a nearby photography shop and Dale had his
3. Theodore Andruss, b. 1860. photo taken. Then they went back to face the barber. This time Dale let him
4. Emma Goble, b. 1862. cut his ringlets. According to Uncle Harold when they returned home from

. P the barber Grandma took one look at her littie boy and began to sob.
Miss Emma Goble Lathrop, official historian of the New York Chapter of the

Daughters of the American Revolution, is one of the youngest members to hold

office, but one whose intelligence and capability qualify her for such distinction. .
Miss Lathrop is not without experience; in her present home and native city, New- Flg. 2. Dale Ashman page.
ark, N. J., she has filled the positions of secretary and treasurer to the Girls'

Friendly Society for nine years, secretary and president of the Woman’s Auxiliary

of Trinity Church Parish, treasurer of the St. Catherine’s Guild of St. Barnabas

Hospital, and manager of several of Newark's charitable institutions which her

grandparents were instrumental in founding. Miss Lathrop traces her lineage

back through many generations of famous progenitors on both sides. Her maternal

ancestors were among the early settlers of New Jersey, among them John Ogden,

who received patent in 1664 for the purchase of Elizabethtown, and who in 1673 was

Fig. 1. Ely Ancestry page.

and dynamic. For example, census records, ship manifests, historical newspa-
pers, parish records, and military records are just a few of the types of informa-
tion that a family-history company like Ancestry.com is interested in gathering,
integrating, and making available to its clients. In addition to static sources,
there are also dynamic sources such as family blogs, shared photo albums, and
the Facebook social graph that could usefully augment the historical document
base. Taken together, these sources easily exceed many exabytes of data. So the
family-history domain certainly exhibits the volume, variety, and velocity chal-
lenges characteristic of Big Data. This domain also expresses the veracity di-
mension: it is common for multiple sources to make conflicting assertions about
family-history details such as dates, places, names, person identity, and familial
relationships.

Returning now to the relatively modest collection of 85,000 historical books,
it is true that a search engine such as Lucene® could readily be used to construct
a full-text keyword index of this document base. However, keyword search, while

5 See http://lucene.apache.org.
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Ontology Snippets:

ChildRecord
external representation: ~(\d{1,3})\.\s+([A-Z]\w+\s[A-Z]\w-+)
(;\sb\\s([1][6-9]\d\d))?(; \sd\\s([1][6-9]\d\d)) 7\
predicate mappings: Child(z); Child-ChildNr(z,1); Person-Name(z,2);
Person-BirthDate(z,4); Person-DeathDate(z,6)

Fig. 3. Ontology Snippet Example. (The predicate mappings associate the text
recognized by the regular-expression capture groups 1, 2, 4, and 6 with new child z in
their respective relationships in Figure 4.)

q
H i
| DeathDate |
........... , '
N ! |
BirthDate i E MarriageDate
""" \
--------- 1
\
Name 1 Person
_________ ! Spouse
Residence i i
Child |[— ChildNr
Son Daughter

Fig. 4. Ontological Conceptualization for Assertion Extraction.

a good start, is not nearly enough to accomplish the types of semantic searches
we need. Is it possible to apply semantic markup to the concepts contained
within those pages, semantically index the information for search and query, and
clean and organize it as a valuable storage repository? Manually, with crowd-
sourcing, this may be possible, but neither the expense nor the timeliness would
be tolerable. We see several ways conceptual modeling can “come to the rescue”
to enable this application—and, by implication, to enable similar applications:

— Conceptual-Model-Based Information Extraction. To address the Big Data

issues of volume, velocity, and variety, we take a conceptual-modeling ap-
proach to information extraction. We create a conceptual model that con-
forms to an author’s point of view and linguistically ground the conceptual
model, turning it into an extraction ontology [ECJ*t99,ELLT11|. We linguis-
tically ground a conceptual model by associating regular-expression pattern
recognizers with the object and relationship sets of the conceptual model
or with coherent collections of object and relationship sets, which we call
ontology snippets. For example, we can declare the ontology snippet in Fig-
ure 3 to extraction information into the conceptual model in Figure 4, which
represents the author’s view of the child lists in Figure 1. Further, since
manual creation of pattern recognizers is likely to be too expensive for the
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DeathPlace
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BirthPlace |
!

Rt

i
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Name ‘
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i
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i
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i

Fig. 5. Target Ontology of Desired Biographical Assertions.

volume, velocity, and variety of Big Data applications, we seek for ways to
automatically generate recognizers (see [PE13a] for an example).

Conceptual-Model-Based Knowledge Organization. Information that is ex-
tracted with respect to an author’s view is often not ideally organized for
search and query. Moreover, we are often interested not only in the stated
assertions that can be extracted but also in what can be inferred from the
stated assertions. Figure 5 shows a conceptualization of the way we may
wish to organize the information in Figure 4 or the information extracted
from any other historical document containing family-history information.
Because conceptual models are or can be formally based on predicate cal-
culus, we can use inference rules that map from one conceptual model to
another to organize our knowledge base. For example, we can reorganize the
Son and Daughter information in Figure 4 as Child information in Figure 5
and the Name as a multi-token string into an aggregate of GivenNames and
a Surname. We can also infer Gender, which is almost never stated explicitly,
either from the Son and Daughter classification or from GivenNames based
on a probabilistic model of male and female names in nineteenth century
America. (See [PE13b] for an explanation about how we use Jena” inference
rules to map one conceptualization to another.) Besides conceptual organi-
zation, we would also like to resolve object identity. Of the four mentions
of the name “Mary Ely” in Figure 1, three denote the same person, but the
“Mary Ely” who is the daughter of Abigail is certainly different since she is
the granddaughter of the other Mary Ely. We take a conceptual-modeling
approach to resolving object identity. We extract and organize facts and then
check, for example, whether two people with similar names have the same

7 http://jena.apache.org/
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parents or were born in the same location on the same date. (See [PE13b] for
an explanation about how we use the Duke® entity resolution tool to resolve
object identity.)
Conceptual-Model-Based Semantic Indexing and Query Processing. To sup-
port the unlocking of the “veritable gold mine of information” in Big Data
applications, we provide a conceptual-model-based, semantic-search mech-
anism that includes semantic indexing, free-form and advanced form-based
query processing, and cross-language query processing:

e Semantic Indexing. To answer queries quickly, we must semantically

crawl and index resources in advance. To create semantic indexes, we
apply conceptual-model-based extraction ontologies to resources; we also
pre-execute inference rules so that we index not only stated assertions
but also inferred assertions [EZ10].

Free-form Query Processing. We process free-form queries in a hybrid
fashion. We first apply extraction ontologies to a query to discover any
semantics and leave the rest (minus stopwords) for keyword processing
[ELLT12|. For example, for the query “birth date of Abigail, the widow”
the extraction ontology in Figure 5, with good recognizers, would dis-
cover that “birth date” references the BirthDate object set, that “Abigail”
is a name in the GivenName object set, and that “widow” is a keyword.
Hence, the query processing system would generate a query that joins
over the relationship sets connecting the identified object sets in Fig-
ure 5, selects with the constraint GivenName = ‘Abigail’, and projects
on the mentioned object sets— Year of BirthDate and GivenName for
this query. The semantic index links to the pages on which (1) the name
“Abigail” and a birth year are mentioned, and (2) the keyword “widow”
is present. Since the page in Figure 1 has both, the page-rank algorithm
would place it high on its list.

Advanced Form-based Query Processing. Because we process queries
with extraction ontologies based on conceptual models, once an extrac-
tion ontology is identified as being applicable for a query, the system
may use it to generate a form for advanced query processing. The query
processing system treats all constraints in a free-form query conjunc-
tively, but the generated form allows for the specification of negations
and disjunctions as well [ELL'12].

Cross-Language Query Processing. Since extraction ontologies are lan-
guage independent, we can both semantically index and process queries
in any language. (In our research we have implemented test cases for En-
glish, French, Japanese, and Korean.) We process cross-language queries
by requiring that the extraction ontologies for each language have struc-
turally identical conceptual-model instances. Thus, we are able to inter-
pret a query with the extraction ontology in language L; and translate
the query at the conceptual level to the extraction ontology in language
Ls. We can then execute the query over the semantic and keyword in-

8 http://code.google.com/p/duke/
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dexes to obtain a result in language Lo, which can then be translated
back into language L for display to the user [ELLT11,ELL*12].

— Conceptual-Model-Based Constraint Checking. To address the Big Data is-
sue of veracity in our family-history application, we envision applying the
constraints declared in a conceptual model to check constraint violations.
For example, a person should have only one mother. Because the data is
obtained through information extraction and through other means such as
crowd sourcing and wiki-like updates by the general public, we allow conflict-
ing information to enter into the system, resulting in a myriad of constraint
violations: “I'm my own grandpa’, as the saying goes, occurs in the actual
(fairly massive) amount of data collected so far [Canl3|. Big Data quality
[Bat12] will become a huge issue for our family-history application.

— Conceptual-Model-Based Ontology Construction. Ontology construction is
one of the bottlenecks preventing the semantic web from achieving its envi-
sioned potential as a Big Data application. Conceptual modeling can play a
role in automating ontology construction. We have experimented with an ap-
proach to automated ontology construction, that takes a collection of tables
all on some topic (e.g., Statistics Canada, http://www.statcan.gc.ca/start-
debut-eng.html), interprets each table and reverse-engineers it into a concept-
ual-model instance, and integrates the conceptual-model instances into an
ontology that covers the concepts and relationships discovered in the collec-
tion of tables [TELT05].

The era of web-scale applications and Big Data is here to stay. As conceptual-
modeling researchers we should look for ways to integrate our theory into the
practice of Big Data. We see excellent opportunities in all four dimensions of
Big Data (volume, velocity, variety, veracity) and expect that the community
can find more beyond those mentioned here in connection with our efforts to
superimpose a web of knowledge over historical documents.
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